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Abstract—This paper presents an analysis of the equations governing the dynamics of shear-
deformable composite plates, without recourse to a variational procedure. [t is noted that the
operator associated with the governing equations is nonsymmetric ; using a first-order perturbation
technique, it is shown to be positive-definite. In addition, using the biorthogonality condition, the
dynamic response of the plate is formulated.

. INTRODUCTION

Substantiation of shear-deformation theories of composite plates and shells has been the
object of increasing attention during the last years. A review of composite structures is
given by Bert and Francis (1974), and a critical review of transverse shear-deformable plate
theorics by Librescu and Reddy (1987).

In this paper we will refer to the basic approaches, namely, (i) a higher-order shear
deformation theory (HSDT), derived on the basis of representation of the displacement
ficld as per egn (1), without recourse to a variational principle (Librescu, 1968 ; Librescu
and Reddy, 1987), and (ii) theories derived through a variational principle and based on
the above representation (Reddy and Phan, 1985), or on a lincar representation (FSDT) of
the displacement field through the plate thickness (Yang er al., 1965 ; Whitney and Pagano,
1970). These two basic theorics will be referred to later as A and B, respectively.

Although the matrix associated with A4 is not self-adjoint, it is expected, considering
the conservative character of the problem, to be positive-definite, and will be shown to be
so using a first-order perturbation technique.

In the numerical examples, the response of a rectangulur cross-ply laminated plate
excited by a stationary random load is considered, and the results are compared with their
counterparts in B.

2. REFINED HIGHER-ORDER THEORY

In the subsequent analysis, the distribution of the displacement field across the plate
thickness is considered as in Cederbaum ez al. (1987):
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316 G. CEDERBALM ¢t ul.

where U, U, and U, are the components of the 3D displacement vector in the x-, y- and
z-directions, respectively: ¢, and . denote the rotation of the normals to the mid-plane
about the y- and x-axes, respectively, while ( ), denotes the partial derivative with respect
to the indicated coordinate.

The above representation of the displacement field yields a parabolic distribution of
transverse shear strains across the plate thickness and the condition of zero in-plane loads
on the bounding planes of the plate (see Fig. 1). By this means, the need to introduce a
transverse shear correction factor, as in the case of FSDT, is obviated.

For an orthotropic material. in which the elastic axes of the layer coincide with the
geometrical ones, the pertinent constitutive equations may be expressed as
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are the reduced elastic constants.

The distribution of the trunsverse normal stress, o, can be obtained by integration
across the segment [0, ), of the equation of motion of the 3D elasticity theory, written in
the absence of body forces as

oh,=pU, i=1273 3)

where p is mass density and the dots denote the time derivatives. This yields

Fig. 1. Geometry and coordinate system for a rectangular plate.
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gy = :[pljl - Q55(wx.x + w’_t.\') - Qd-l(wv.y + Wn)] - Eﬁl :J(Q55 u/.,tx + QJJ w’._x[v)' (4)

The stress resultants L, and stress couples L,s, (4, j = 1. 2), involved in the bending
equations of motion of plate theory are defined as
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where N denotes the total number of layers.
The equations of motion necessary for solution of this problem as expressed in terms
of the 2D quantities in eqn (5). are

Ll/./’Ln:fx
Ly,— :J=f: i'f=l-2
L.J..+PJ =f,l (6)

where £, denotes the transverse external load, while

w2
/f, = j pzU d:
A2

and

2
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h/

are the rotatory and transversal inertia terms, respectively.

Equations (6) may be obtained through integration of the equations of motion of the
3D clasticity theory across the plate thickness. Finally, the governing equations associated
with bending theory are obtained by expressing the stress resultants and stress couples in
eqns (6) in terms of the unknowns ., ¢, aund W. Using in addition the proportional
damping model (C being the damping factor), the governing equations read :
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with the rigidities and inertia terms defined as:
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3. DYNAMIC RESPONSE

Equations (7) constitute a set of partiat differential equations of the sixth order. For

the case of a simply-supported rectangular panel (« x £), the boundury conditions read

W=y =L, =0 atx=0u¢
W=y, =L..=0 aty=0"h

(8)

The solution functions are then represented in a form that satisfies exactly the boundary

conditions

W (o p ) =Y Xppcosaxsin By T () = Y Xon T

m.n mn
ooy =3 YVasinaxeos fr () = 3 Vou T
mon mrn

;I’(Y ¥ .’) = X "",,,,,S‘“Cf.lﬂnﬁl Tmn(() = Z L; mn mn

m.n mn

9



Remarks on a dynamical higher-order theory 519

where x = mn/a; f = nn/b; X,.. Y... W, are the coefficients of the natural mode shapes
associated with the free vibration problem while T,,,(¢) denote the generalized coordinates.
The transverse loading function is given by

Py=Py(x.y.0) =Y gusinxxsinfy F,. (1) (10)
where ¢, are the Fourier coefficients. For the free vibration problem F, (1) = 0, C = 0 and
T,..(1) =€ (i = \/— 1) ; using (9) in the governing equations (7). we obtain the eigenvalue
problem in the form

[[K],,,,,—(U,E,,,[."[]] {A}mn = {0} (Il)

where

{A:Im = {1?,"". }7,,,,,, ;i./m },

Both [K] and [M] are real and nonsymmetric matrices, and since [M] is also non-
singular, we can multiply eqn (11) by [M]~' from the left to obtain for each mn

(M) '[K]{A) = o' [M] (M)A} = o [1] {A} (12)
and by writing [4] = [M]~'[K]. the cigenvalue problem is obtained in the form
(A]{A} = ’[1] {A} (13)
where [A] is likewise real and nonsymmetric.
Consider now the cigenvalue problem associated with the adjoint operator [A]7. Its
cigenvalues @? are the same as those of [A4], 50 we can write

[4]"{3} = w*[1{A} = ’[7] {A}. (14)

For this case the biorthogonality condition (Meirovitch, 1980) is applied

a b
(w,i,,—ca,fq)ﬁf {A} (B}, dydx =0 (15)

where the barred quantities are associated with the eigenvalue problem of [4]7.
Using the modal analysis technique, the decoupled differential equation for T,,.(¢) is

7"mn(l) + CTmn(’) +w/$m Tmn(’) = :I‘I*" an(’) (16)

where
a *h
C = 2‘:'""(”’"" an(’) = j J‘ ;/T/I""P.‘('v‘ 'LV‘ I) d). d'\'
0 (]
while J,,, stands for the norm (gencralized mass), defined as

J Jm".m" =‘Imn "’ =p‘”=q
™0 otherwise

where
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Under homogeneous initial conditions. the solution of eqn (16) is

~

l i
Tonl) =7\j Fon(£) (1= 1) dt (18)

mn

then with eqn (9). and following ElishakofT (1983). the transverse displacement is expressed
as

il
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where
~ P
2n ,

while #,,,(w) is the complex frequency response function associated with the mn mode,
Ho(@) = 1@ = 07 + 208y @,00) = 1/ Ly ().

4. RANDOM VIBRATION ANALYSIS

For stationary excitation with zero mean, the cross-correlation of the transverse dis-
placement function is expressed us

Ry(x, R T o T L 1) = Z Z W,.(x.. ¥i) ”'M(—\':. }'1) J‘ SQMQN((U)I[mn(“'J)}{;:,(‘U)U‘m dw

mn py
(20)

where
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while
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denotes the cross-spectral density function of the applied load.

If the plate is driven by a point load at (. §). random in time, and characterized by
an ideal white-noise correlation function, we have

Re{x\. X2, ¥y, ¥2. 1) = Ro(x, ~ £)(x; — o1, - oy — P)o(r) (22)

and
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where Sy = Rf2r and dA, = dx, dy, (i = 1, 2).
For the case where the foad is applicd at the center of the plate, i.e. £ = ¢/2; 7 = b/2,
we have

] 3 i3 - 132 - 2
]’v’;“l-&’[(*‘)md’,. (-—-f)("‘”‘* (u_,‘)fp 12 (__l)w ni-]

P4
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and the mean-square of the displacement function at the driven point is

abab a b\ [*  So.0 (@)
w(33359)-22n ()G Ciisee o

The natural frequencies were found to be well separated (Cederbaum er al., 1987) and
for the case of light damping, the autocorrelation terms only are taken into account, so

that
Rw( , mr o oonw J‘ dw

b ab !
‘z‘i‘%"’)"s"zz‘ sint st 2 | @
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5. FIRST-ORDER PERTURBATION OF THE EIGENVALUE PROBLEM

Let A, be #x n real matrix, whose cigenvalues 4,/ = 1, 2,...,n are distinct and whose
right and left eigenvectors {A,} and {A,}, respectively, are normalized to satisfy

{5,,}}‘{A,,},‘ = (S";' aﬂd {An,’ A,,{A‘,", == /,,,(S (28)

Consider also the n x n matrix 64, representing a small variation of 4,, whose eigenvalues
and eigenvectors are 84, and {34}, {84,}.. respectively.
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For the perturbed matrix A4, defined as
A=A,+04, (29)
the assumption of a first order perturbation implies

/.'l == )’VU+6,.""
{A;t = {Au}n + {‘SAf’}i: {5;; = “(Ziu}x + {(551;}{ (30)

which enables us to determine 64,,. {3A,}; and {34.}, from the already known A, oA,
(A}, and {A,). This leads to the foll owing expressions, Meirovitch (1980) :

Anis

Od, = (B T34,{A,,
1A}, = i 75&,_,,‘04,,‘47,},{ ok Lhk= 12,00, nooi#Ek
k=1 Api = Pk
04,), = Z Baicod, {3, Ade jhk=12.... n.oj#Ek (a0
K= Aoy = o
For the case where o, is symmetric, so that {A,}, = {A,},, and 04, is real. we obtain
dd, = 1A OAIALL (32
which is a rcal number, and
0A,}, = [8A,}, (RR)]

which implics that 4, is a real nsumber as well, and
AL =1{48,1,+104,}, = [A,}, +{44,}, = {A}.. (34)

From eqn (34) we conclude that although the perturbed matrix A4 might be non-
symmetric, its right and left eigenvectors coincide within the first order perturbation, and
the norm associated with 4 may be computed by the right eigenvectors only.

Next, we would like to show that for the case where .4, is nonsymmetric, A, although
not self-adjoint, may be positive-definite. For this purpose we use the following theorem,
based on the fact that the eigenvalues of 4 depend continuously on its coefficients (Franklin,
1969) :

“Lety, ... u, bethedifferent eigenvalues of an n x nmatrix A = (¢,,). Let the eigenvalue

t, have multiplicity m, where £m, = n. Then, for all sufficient small £ > 0 there is a number

= 7(¢) > 0 such that if }b,—a,| <y for i, j=1,2,...,n then the matrix B = () has
exactly m, eigenvalues in thecircle |A—yu | <cforeach j=1,.2,... .57

This theorem implies, for our case, that once 4,; (the smallest gigenvalue of A,) is
sufficiently positive (removed from zero), and 64, sufficiently small, then, even if all the
cigenvalues of the perturbation matrix, d4,, are negative (they were shown to be real)—
thosc of A, 4, are positive, allowing us to conclude that A is positive-definite.

We now would like to apply the previous HSDT derivation of the non self-adjoint
system for determination of its cigenvalues and cigenvectors. To this end, et A, be the
matrix obtained by the other HSDT version, (category B) and A its counterpart obtained
by the present HSDT version. All that has to be shown is that 34, is small compared with
A,. This will be illustrated in the following numerical example.

Consider a rectangular. symmetric, cross-ply laminate, composed of four layers (0,
907, 90", 0") of equal thickness. The material of each layer, consisting of a woven graphite
fabric and carbon matrix, has the following enginecring constants, given by Pagano and
Soni (1986)
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Note: The displacement ficld of eqn (1) is also used in the HSDT (B) version, where
the right and left eigenvectors coincide, and the norm is:

a b
Jmn = J’ J‘ {[l;‘/,‘;‘m'i"lj(lvjm'{' erm)
0 Jo

8 ) 2
- EF IS(“,l;m + Y;m + an u/mn.x + Ymn u/mn.y)

16 . . , 5
- él—’i I'r [‘/VI:NI + yr‘r’m + 2(/Ymn l‘/’"ﬂ,x + Ymn ‘4/""1._1‘) + u/l;ml + V I;ln,_b' } d.v dx' (35)
Table | shows the A, A,. 84, and §A,/A, matrices, for the first mode, witha =5 = 10 A.
In general, A differs from A, by less than 10%, which is of the same order as in the example
of Ryland and Mecirovitch (1980). (The difference is even smaller for a/h > 10.) Figure 2

Table 1. Matrices A (HSDT (A)), A, (HSDT(8)). 04, and oA, jA, form n =1, | and a/h = 10.

A, A
0.561E+11 0.656E+ 10 0.112E+11 0.566E + 1 | 0.753E+10 0.105SE + 11
0.895E+13 0.433E+13 0.862E + 11 0.102E+14 0478E+13 0.793E+ 11
0.165E+ 14 0.827E+ 11 0.584E+ 13 0.145E+ 14 0.739E + It 0.547E+13
OA, = A—A, LERER
0.501E +09 0.966E +09 —-0.7SIE+09 0.893E-02 0.147E+00 0.669E —01
0.123E+13 0.4M8E+12 —~0.684E + 10 0.138E+00 0.103E +00 0.794E-01
0.1HE+13 0.881E+10 —0.365E+12 0.671E-01 0.107E+00 0.626E —0!

SAS 25:5-¢
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Fig. 3. Variation of X/ vs a/h (first mode).

displays the normalized fundamental frequencies for various ¢/h ratios, computed via the
first order shear deformation theory, via HSDT (B), and via HSDT (A). All three curves
tend asymptotically to the CPT line, drawing closer together as a A increases. It can also
be seen that the curve associated with A is bordered by the two curves associated with 8.
Figure 3 shows the variation of X. normalized to W, tor FSDT. HSDT (8) and the right
and left of HSDT (A). It can be seen that the right cocflicient of HSDT (1) is close to
HSDT (8) while the left one is closer to FSIT. Figure 4 shows the variation of ¥, where
the curves due to all theories practically coincide. Since shear-deformation theories arc
cflicient at low ratio of a/h, the difference between them is clearly seen there.

The mean-square transverse displacement for the above random vibration problem via
the various theories, normalized to those obtained via CPT, is shown in Fig. 5. Also included
in this figure are the approximate results obtained by HSDT () by using the right
eigenvector only. It can be seen that all theories again tend together asymptotically to the

)
e
2k
<
h Y
b
HSDT (A~RIGHT
ar ¥SOT (B)
FSOT
HSDT (A-LEFT) , |
o 10 20 30 20 50

a’/h

Fig. 4. Variation of ¥/ H vs a/h (first modce).
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Fig. 5. Normalized (to CPT) mean-square transverse displacement of the plate center vs a/h.

CPT linc as the ratio ¢/h increases, and as in Figs 2 -4, the mean-square via HSDT (A4) is
bordered by those obtained via 8.

6. CONCLUSION

The cquations governing the dynamics of shear-deformable composite plates are
analyzed. This high-order shear deformation theory results in a nonsymmetric operator.,
Using the first-order perturbation technique, it is shown that the cigenvalues are real and
positive, which leads to the conclusion that the operator is positive -definite. The dynamic
response of the laminated plate is then formulated using the biorthogonality condition. It
wius found, that when the right cigenvectors only are used, the results are very close to those
obtained when using both the right and the left eigenvectors ones.

The above conclusions could be extended to other plate and shell theories belonging
to category A (Ambartsumyan, 1970 Rueissner, 1977 ; Levinson, 1980 and Morley, 1959).
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